Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Xenobiotica ; 53(8-9): 523-535, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938160

RESUMO

Predicting plasma concentration-time profiles of disproportionate metabolites in humans is crucial for evaluating metabolites according to the Safety Testing guidelines. We evaluated Css-MRTpo, an empirical method, using chimeric mice with humanised livers capable of generating human-disproportionate metabolites. Azilsartan and AZ-M2 were administered to humanised chimeric mice, and pharmacokinetic parameters were obtained. Pharmacokinetic data for DS-1971a and DS-M1 in humanised chimeric mice were obtained from the literature. The human plasma concentration-time profiles of these compounds were simulated using the Css-MRTpo method. Azilsartan, DS-1971a, and PF-04937319 produced human disproportionate metabolites, AZ-M2, DS-M1, and PF-M1, respectively. The predicted human pharmacokinetic profiles of PF-04937319 and PF-M1 were obtained from a previous study, and their outcomes were re-evaluated. Our findings revealed that the plasma concentrations of the three metabolites were unexpectedly underpredicted, whereas the three unchanged drugs were reasonably predicted. Further, the introduction of the empirical scaling factor of 3, obtained from six model compounds, improved the predictability of metabolites, suggesting the potential usefulness of the Css-MRTpo method in combination with humanised chimeric mice for predicting the pharmacokinetic profiles of disproportionate metabolites at the early stage of new drug development.


Assuntos
Fígado , Pirazóis , Camundongos , Humanos , Animais , Fígado/metabolismo , Pirazóis/metabolismo , Sulfonamidas/metabolismo
2.
Drug Metab Pharmacokinet ; 47: 100467, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36223709

RESUMO

Benzbromarone, a uricosuric drug, has the potential to cause serious hepatotoxicity. Several studies have shown the formation of reactive metabolites of benzbromarone and their association with hepatotoxicity in mice. However, it is unknown whether those reactive metabolites are generated in humans in vivo. In the present study, we firstly investigated the pharmacokinetic profiles of benzbromarone in chimeric TK-NOG mice transplanted with human hepatocytes (humanized-liver mice) and then investigated whether reactive metabolites could be generated. The area under the plasma concentration-time curve ratio of benzbromarone and its major metabolites (benzbromarone: 1'-hydroxy benzbromarone: 6-hydroxy benzbromarone) in humanized-liver mice was 1: 1.2: 0.7, which was similar to that reported in humans. In addition, glutathione conjugates and their further metabolites derived from the epoxidation of the benzofuran ring and 1',6-dihydroxylation of benzbromarone were detected in the livers, urine and plasma. Furthermore, their peak intensities in mass spectrometry showed markedly higher levels compared with those of TK-NOG mice. These results suggested that the metabolic profiles of benzbromarone in humanized-liver mice were similar to those in humans and that the reactive metabolites detected in humanized-liver mice could be generated and are associated with the benzbromarone-induced hepatotoxicity in humans.


Assuntos
Benzobromarona , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Humanos , Animais , Benzobromarona/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
3.
Sci Rep ; 12(1): 14907, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050438

RESUMO

Chimeric TK-NOG mice with a humanized liver (normal Hu-liver) are a unique animal model for predicting drug metabolism in humans. However, residual mouse hepatocytes occasionally prevent the precise evaluation of human drug metabolism. Herein, we developed a novel humanized liver TK-NOG mouse with a conditional knockout of liver-specific cytochrome P450 oxidoreductase (POR cKO Hu-liver). Immunohistochemical analysis revealed only a few POR-expressing cells around the portal vein in POR cKO mouse livers. NADPH-cytochrome c reductase and cytochrome P450 (P450)-mediated drug oxidation activity in liver microsomes from POR cKO mice was negligible. After the intravenous administration of S-warfarin, high circulating and urinary levels of S-7-hydroxywarfarin (a major human metabolite) were observed in POR cKO Hu-liver mice. Notably, the circulating and urinary levels of S-4'-hydroxywarfarin (a major warfarin metabolite in mice) were much lower in POR cKO Hu-liver mice than in normal Hu-liver mice. POR cKO Hu-liver mice with minimal interference from mouse hepatic P450 oxidation activity are a valuable model for predicting human drug metabolism.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fígado , Varfarina , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Varfarina/metabolismo , Varfarina/farmacologia
4.
Xenobiotica ; 52(6): 613-624, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36148579

RESUMO

Valsartan is an antihypertensive drug that was developed using common marmosets (Callithrix jacchus) in pivotal toxicity studies as a non-rodent species. The aim of the present study was to investigate the utility of marmosets in the candidate selection of this drug from a pharmacokinetic and metabolic viewpoint.Valsartan, as well as three other angiotensin II type-I receptor blockers, assumed as competitive candidates, were administered to common marmosets. Human pharmacokinetic parameters predicted by single-species allometric scaling and Wajima superposition suggested that valsartan may exhibit promising pharmacokinetic properties in humans.In vitro metabolic studies of valsartan using isolated rat, dog, marmoset, cynomolgus monkey, and human hepatocytes revealed that the marmoset was the most relevant animal species to humans presenting with the most abundant human metabolite, 4-hydroxyvalsartan. Oral administration of an elevated dose of valsartan to a common marmoset demonstrated that the level of 4-hydroxyvalsartan in the plasma was comparable to that in clinical practice and suggested that safety of the human metabolite might have been confirmed in the toxicity studies using common marmosets.These results suggest that common marmosets, the small, non-human primates, had been a suitable species for the development of valsartan.


Assuntos
Anti-Hipertensivos , Callithrix , Angiotensina II/metabolismo , Animais , Anti-Hipertensivos/metabolismo , Callithrix/metabolismo , Cães , Humanos , Macaca fascicularis/metabolismo , Preparações Farmacêuticas/metabolismo , Ratos , Estudos Retrospectivos , Valsartana/metabolismo
5.
Drug Metab Pharmacokinet ; 42: 100410, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839181

RESUMO

We developed a novel immunodeficient NOG mouse expressing HSVtk mutant clone 30 cDNA under the control of mouse transthyretin gene enhancer/promoter (NOG-TKm30) to acquire fertility in males and high inducibility of liver injury in females. Maximum human albumin levels (approx. 15 mg/mL plasma) in both male and female NOG-TKm30 mice engrafted with human hepatocytes (humanized liver mice) were observed 8-12 weeks after transplantation. Immunohistochemical analyses revealed abundant expression of major human cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2D6, CYP2E1, and CYP3A4) in reconstituted liver with original zonal distribution. In vivo drug-drug interactions were observed in humanized liver mice as decreased area under the curve of midazolam (CYP3A4/5 substrate) and omeprazole (CYP3A4/5 and CYP2C19 substrate) after oral administration of rifampicin. Furthermore, we developed a pregnant model for evaluating prenatal exposure to drugs. The detection of thalidomide metabolites in the fetuses of pregnant humanized liver mice indicates that the novel TK model can be used for developmental toxicity studies requiring the assessment of human drug metabolism. These results suggest that the limitations of traditional TK-NOG mice can be addressed using NOG-TKm30 mice, which constitute a novel platform for humanized liver for both in vivo and in vitro studies.


Assuntos
Hepatócitos , Fígado , Animais , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Feminino , Inativação Metabólica , Fígado/metabolismo , Masculino , Camundongos
6.
Xenobiotica ; 51(9): 983-994, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34227923

RESUMO

Chimeric mice are immunodeficient mice in which the majority of the hepatic parenchymal cells are replaced with human hepatocytes.Following intravenous administration of 24 model compounds to control and chimeric mice, human hepatic clearance (CLh) was predicted using the single-species allometric scaling (SSS) method. Predictability of the chimeric mice was better than that of the control mice.Human CLh was predicted by the physiologically based scaling (PBS) method, wherein observed CLh in chimeric mice was first converted to intrinsic CLh (CLh,int). As the liver of chimeric mice contains remaining mouse hepatocytes, CLh,int was corrected by in vitro CLh ratios of the mouse to human hepatocytes according to their hepatocyte replacement index. Further, predicted human CLh was calculated based on an assumption that CLh,int in chimeric mice normalised for their liver weight was equal to CLh,int per liver weight in humans. Consequently, better prediction performance was observed with the use of the PBS method than the SSS method.SSS method is an empirical method, and the effects of coexisting mouse metabolism cannot be avoided. However, the PBS method with in vitro CLh correction might be a potential solution and may expand the application of chimeric mice in new drug development.


Assuntos
Preparações Farmacêuticas , Animais , Quimera , Hepatócitos , Humanos , Fígado/metabolismo , Taxa de Depuração Metabólica , Camundongos , Preparações Farmacêuticas/metabolismo
7.
Xenobiotica ; 51(4): 479-493, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33455494

RESUMO

Common marmosets (Callithrix jacchus) are small non-human primates that genetically lack cytochrome P450 2C9 (CYP2C9). Polymorphic marmoset CYP2C19 compensates by mediating oxidations of typical human CYP2C9/19 substrates.Twenty-four probe substrates were intravenously administered in combinations to marmosets assigned to extensive or poor metaboliser (PM) groups by CYP2C19 genotyping. Eliminations from plasma of cilomilast, phenytoin, repaglinide, tolbutamide, and S-warfarin in the CYP2C19 PM group were significantly slow; these drugs are known substrates of human CYP2C8/9/19.Human total clearance values and volumes of distribution of the 24 test compounds were extrapolated using single-species allometric scaling with experimental data from marmosets and found to be mostly comparable with the reported values.Human total clearance values and volumes of distribution of 15 of the 24 test compounds similarly extrapolated using reported data sets from cynomolgus or rhesus monkeys were comparable to the present predicted results, especially to those based on data from PM marmosets.These results suggest that single-species allometric scaling using marmosets, being small, has advantages over multiple-species-based allometry and could be applicable for pharmacokinetic predictions at the discovery stage of drug development.


Assuntos
Callithrix , Omeprazol , Animais , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9 , Genótipo , Humanos , Varfarina
8.
Drug Metab Pharmacokinet ; 35(6): 505-514, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32962912

RESUMO

Troglitazone and its major metabolite troglitazone sulfate were intravenously administered to chimeric mice with different ratios of liver replacement by human hepatocytes. Total clearances were converted to hepatic intrinsic clearances normalized to their liver weight, with the assumption that extra-hepatic elimination of these compounds was negligible. These values were plotted against the replacement indices, and postulated values for virtual 100% chimeric mice were assumed to be equivalent to those in humans. Metabolic formation ratio was estimated by comparing AUCs of troglitazone sulfate after separate administration of troglitazone and troglitazone sulfate. Liver to plasma concentration ratios were obtained from direct measurement. These parameters were extrapolated to 100% chimeric mice and subjected to semi-physiological pharmacokinetic modeling using pharmacokinetic parameters for oral administration taken from literature. Our simulated plasma concentration-time profile of troglitazone agreed well with observed values obtained in clinical study. However, the profile of troglitazone sulfate was far below the reported values. Although the possible reasons for this discrepancy remains unsolved, the combination of chimeric mice with semi-physiological PK modeling proved to be a useful tool in understanding the function of each PK parameter in human pharmacokinetics of troglitazone and its conjugated metabolite.


Assuntos
Hepatócitos/enzimologia , Hipoglicemiantes/farmacocinética , Fígado/enzimologia , Modelos Biológicos , Ésteres do Ácido Sulfúrico/farmacocinética , Troglitazona/farmacocinética , Animais , Simulação por Computador , Hepatócitos/transplante , Humanos , Hipoglicemiantes/sangue , Masculino , Desintoxicação Metabólica Fase II , Camundongos Transgênicos , Ésteres do Ácido Sulfúrico/sangue , Quimeras de Transplante , Troglitazona/sangue
9.
Drug Metab Pharmacokinet ; 35(4): 389-396, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32690433

RESUMO

Prediction of human pharmacokinetics is important in the preclinical stage. Values for total clearance of compounds from plasma should be one of the most important pharmacokinetic parameters for predictions. Although several physiological and empirical methods including single-species allometry for prediction of values for human clearance of compounds using humanized-liver mice have been reported, further improvement of prediction accuracies would be still expected. To optimize these approaches, we proposed methods for unbound intrinsic clearance in virtually 100% humanized-liver mouse by incorporating unbound plasma fractions of compounds in differently humanized-liver mice. Comparisons of prediction accuracies of values for human clearance of 15 model compounds were performed among our current physiological and previously reported models and single-species allometry using humanized-liver mice. Incorporation of the actual unbound plasma fractions of compounds and correction of residual mice hepatocyte in humanized-liver mice showed comparable prediction accuracy to that by single-species allometry. After exclusion of 3 compounds with large species differences in values of clearance and unbound plasma fractions between mice and humans out of 15 compounds, prediction accuracies were improved in the methods investigated. The previously and present reported physiological methods could show the good prediction accuracy of values for clearance of drugs from plasma.


Assuntos
Fígado/metabolismo , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/metabolismo , Acetamidas/sangue , Acetamidas/farmacocinética , Albuterol/sangue , Albuterol/farmacocinética , Animais , Carbamatos/sangue , Carbamatos/farmacocinética , Cromatografia Líquida , Diazepam/sangue , Diazepam/farmacocinética , Diclofenaco/sangue , Diclofenaco/farmacocinética , Digitoxina/sangue , Digitoxina/farmacocinética , Humanos , Itraconazol/sangue , Itraconazol/farmacocinética , Cetoprofeno/sangue , Cetoprofeno/farmacocinética , Fígado/química , Taxa de Depuração Metabólica , Camundongos , Camundongos Transgênicos , Naproxeno/sangue , Naproxeno/farmacocinética , Fenitoína/sangue , Fenitoína/farmacocinética , Piperidinas/sangue , Piperidinas/farmacocinética , Pravastatina/sangue , Pravastatina/farmacocinética , Pirimidinas/sangue , Pirimidinas/farmacocinética , Quinidina/sangue , Quinidina/farmacocinética , Espectrometria de Massas em Tandem , Telmisartan/sangue , Telmisartan/farmacocinética , Terfenadina/análogos & derivados , Terfenadina/sangue , Terfenadina/farmacocinética , Verapamil/sangue , Verapamil/farmacocinética
10.
Xenobiotica ; 50(7): 761-768, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31721621

RESUMO

A Css-MRTpo superposition method was devised to predict (retrospectively) oral plasma concentration-time profiles of PF-04937319 and its MIST-related metabolite, M1, in humans using chimeric mice with humanized liver.Original PK data were taken from a published report in which PF-04937319 and M1 were given to chimeric mice orally and/or intravenously. Human CL and Vss were predicted by single-species allometry and MRTiv,pred were calculated as Vss,pred/CL,pred. MRTpo,human were assumed to be MRTiv,pred plus MAT or mean metabolite formation time (MFT). Human Css was calculated by dividing the corrected oral dose by Vss,pred.Chronological sampling time and measured plasma concentrations were corrected by MRTpo,human and Css,human, respectively, and transformed to the corresponding values in humans.The obtained concentration-time profile of PF-04937319 was superimposed well with the observed data after single and repeated oral administration to humans. The transformed plasma concentration of M1 was somewhat lower than the observed value, but a slow increase of the simulated metabolite reflected gradual increase of observed M1 on Day 1. Transformed M1 gave an almost-flat concentration-time profile on Day 14, which was consistent with the curve observed in humans. Application of this novel method to other MIST-related compounds is discussed.


Assuntos
Benzofuranos/metabolismo , Pirimidinas/metabolismo , Administração Oral , Animais , Glucoquinase/metabolismo , Humanos , Camundongos
11.
Xenobiotica ; 47(5): 382-393, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27389028

RESUMO

1. The partial glucokinase activator N,N-dimethyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (PF-04937319) is biotransformed in humans to N-methyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (M1), accounting for ∼65% of total exposure at steady state. 2. As the disproportionately abundant nature of M1 could not be reliably predicted from in vitro metabolism studies, we evaluated a chimeric mouse model with humanized liver on TK-NOG background for its ability to retrospectively predict human disposition of PF-04937319. Since livers of chimeric mice were enlarged by hyperplasia and contained remnant mouse hepatocytes, hepatic intrinsic clearances normalized for liver weight, metabolite formation and liver to plasma concentration ratios were plotted against the replacement index by human hepatocytes and extrapolated to those in the virtual chimeric mouse with 100% humanized liver. 3. Semi-physiological pharmacokinetic analyses using the above parameters revealed that simulated concentration curves of PF-04937319 and M1 were approximately superimposed with the observed clinical data in humans. 4. Finally, qualitative profiling of circulating metabolites in humanized chimeric mice dosed with PF-04937319 or M1 also revealed the presence of a carbinolamide metabolite, identified in the clinical study as a human-specific metabolite. The case study demonstrates that humanized chimeric mice may be potentially useful in preclinical discovery towards studying disproportionate or human-specific metabolism of drug candidates.


Assuntos
Benzofuranos/sangue , Modelos Biológicos , Pirimidinas/sangue , Animais , Benzofuranos/farmacocinética , Quimera , Glucoquinase/metabolismo , Hepatócitos , Humanos , Camundongos , Farmacocinética , Pirimidinas/farmacocinética
12.
Xenobiotica ; 46(6): 557-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26444900

RESUMO

1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.


Assuntos
Quimera , Descoberta de Drogas , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Farmacocinética , Animais , Humanos , Metaboloma , Camundongos
13.
Biopharm Drug Dispos ; 37(1): 3-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26352195

RESUMO

Chimeric mice with humanized livers (PXB mice) are used to investigate the metabolism and pharmacokinetics of drugs in humans. However, residual murine enzymatic activities derived from the liver and the presence of mouse small intestinal metabolism can hamper the prediction of human drug metabolism. Recently murine Cytochrome P450 3a gene knockout chimeric mice with humanized livers (Cyp3a KO CM) were developed. To evaluate the prediction of drug metabolism, nefazodone (NEF) was administered orally at 10 mg/kg to the following mouse strains: Cyp3a KO CM, murine Cyp3a gene knockout (Cyp3a KO), PXB and severe combined immunodeficiency (SCID) mice. Liquid chromatography-mass spectrometry was used for metabolic profiling of plasma, urine and bile. The prediction of human metabolite levels such as hydroxy nefazodone (OH-NEF), triazoledione form (TD), m-chlorophenylpiperazine and dealkyl metabolites in Cyp3a KO CM was superior to that in Cyp3a KO, PXB or SCID mice. Further, clinical exposure levels of NEF, OH-NEF and TD were reproduced in Cyp3a KO CM. In contrast, NEF was rapidly metabolized to TD in both PXB and SCID mice but not in Cyp3a KO mice, suggesting that murine CYP3A is involved in the elimination of NEF in these mice. These findings demonstrate that the metabolic profile of NEF in Cyp3a KO CM differs qualitatively and quantitatively from that in PXB mice due to the higher metabolic rate of NEF and its metabolites via murine CYP3A. Therefore Cyp3a KO CM might be useful in predicting the metabolic profiles of drug candidates in humans.


Assuntos
Antidepressivos de Segunda Geração/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Fígado/metabolismo , Triazóis/farmacocinética , Animais , Antidepressivos de Segunda Geração/sangue , Antidepressivos de Segunda Geração/urina , Bile/química , Pré-Escolar , Citocromo P-450 CYP3A/genética , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos SCID , Microssomos Hepáticos/metabolismo , Piperazinas , Triazóis/sangue , Triazóis/urina
14.
Drug Metab Dispos ; 43(8): 1208-17, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979261

RESUMO

We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Fígado/enzimologia , Albuminas/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Quimera , Citocromo P-450 CYP3A , Família 2 do Citocromo P450 , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Hepatócitos/transplante , Humanos , Mucosa Intestinal/metabolismo , Isoenzimas/genética , Camundongos , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Esteroide Hidroxilases/genética , Triazolam/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
15.
Drug Metab Dispos ; 43(3): 309-16, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25504502

RESUMO

3'-Hydroxy-4'-methoxydiclofenac (VI) is a human-specific metabolite known to accumulate in the plasma of patients after repeated administration of diclofenac sodium. Diclofenac also produces glutathione-conjugated metabolites, some of which are human-specific. In the present study, we investigated whether these metabolites could be generated in humanized chimeric mice produced from TK-NOG mice. After a single oral administration of diclofenac to humanized mice, the unchanged drug in plasma peaked at 0.25 hour and then declined with a half-life (t1/2) of 2.4 hours. 4'-Hydroxydiclofenac (II) and 3'-hydroxydiclofenac also peaked at 0.25 hour and were undetectable within 24 hours. However, VI peaked at 8 hours and declined with a t1/2 of 13 hours. When diclofenac was given once per day, peak and trough levels of VI reached plateau within 3 days. Studies with administration of II suggested VI was generated via II as an intermediate. Among six reported glutathione-conjugated metabolites of diclofenac, M1 (5-hydroxy-4-(glutathion-S-yl)diclofenac) to M6 (2'-(glutathion-S-yl)monoclofenac), we found three dichlorinated conjugates [M1, M2 (4'-hydroxy-3'-(glutathion-S-yl)diclofenac), and M3 (5-hydroxy-6-(glutathion-S-yl)diclofenac)], and a single monochlorinated conjugate [M4 (2'-hydroxy-3'-(glutathion-S-yl)monoclofenac) or M5 (4'-hydroxy-2'-(glutathion-S-yl)monoclofenac)], in the bile of humanized chimeric mice. M4 and M5 are positional isomers and have been previously reported as human-specific in vitro metabolites likely generated via arene oxide and quinone imine-type intermediates, respectively. The biliary monochlorinated metabolite exhibited the same mass spectrum as those of M4 and M5, and we discuss whether this conjugate corresponded to M4 or M5. Overall, humanized TK-NOG chimeric mice were considered to be a functional tool for the study of drug metabolism of diclofenac in humans.


Assuntos
Quimera/metabolismo , Diclofenaco/metabolismo , Glutationa/metabolismo , Fígado/metabolismo , Animais , Bile/metabolismo , Criança , Pré-Escolar , Diclofenaco/análogos & derivados , Feminino , Meia-Vida , Humanos , Camundongos
16.
Drug Metab Pharmacokinet ; 25(3): 223-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20610881

RESUMO

The ability to predict circulating human metabolites of a candidate drug before first-in-man studies are carried out would provide a clear advantage in drug development. A recent report demonstrated that while in vitro studies using human liver preparations reliably predict primary human metabolites in plasma, the predictability of secondary metabolites, formed by multiple reactions, was low, with total success rates of < or =65%. Here, we assess the use of chimeric mice with humanized liver as an animal model for the prediction of human metabolism in vivo. Metabolism studies with debrisoquine and (S)-warfarin demonstrated significantly higher concentrations of their primary human abundant metabolites in serum or plasma in chimeric mice than in control mice. Humanized chimeric mice were also capable of producing human-specific metabolites of several in-house compounds which were generated through more than one metabolism reaction. This model is closer to in vivo human physiology and therefore appears to have an advantage over in vitro systems in predicting complex metabolites in human plasma. However, prediction of human metabolites failed for other compounds which were highly metabolized in mice. Although requiring careful consideration of compound suitability, this model represents a potential tool for predicting human metabolites in combination with conventional in vitro systems.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Desintoxicação Metabólica Fase II , Preparações Farmacêuticas/metabolismo , Quimeras de Transplante/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Debrisoquina/metabolismo , Regulamentação Governamental , Hepatócitos/citologia , Hepatócitos/transplante , Humanos , Fígado/citologia , Fígado/enzimologia , Desentoxicação Metabólica Fase I , Camundongos , Modelos Animais , Ratos , Varfarina/metabolismo
17.
Drug Metab Dispos ; 38(1): 1-4, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19833842

RESUMO

1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide (YM155 monobromide) is a novel small-molecule survivin suppressant that induces the down-regulation of survivin and exhibits potent antitumor activity in nude mice bearing human hormone refractory prostate carcinoma cell line PC-3. Although YM155, which has a cationic moiety in its structure, is influxed into its pharmacologically effective site (cancer cells) and one of its eliminating organs (hepatocytes) in a transporter-mediated manner, the mechanism seems to be different between the two cell types. The other eliminating organ is the kidney. In this study, the transport of [(14)C]YM155 was characterized by using human embryonic kidney 293 cells expressing organic cation transporter 1 (OCT1/SLC22A1), OCT2 (SLC22A2), and OCT3 (SLC22A3). YM155 inhibited the uptake of a typical substrate [(3)H]1-methyl-4-phenylpyridinium via OCT1, OCT2, and OCT3 with IC(50) values of 23.8, 15.9, and 108 microM, respectively. The time- and saturable concentration-dependent uptake of [(14)C]YM155 was observed in cells expressing OCT1 and OCT2 with K(m) values of 22.1 and 2.67 microM, respectively, but not in cells expressing OCT3. By taking into consideration the tissue distribution and localization of each transporter, these results suggest that, in humans, YM155 is taken up from the blood into hepatocytes and proximal tubular cells via OCT1 and OCT2, respectively. The comparison of the IC(50) values of OCT inhibitors and K(m) values for the uptake of YM155 into cells expressing OCTs with those into cancer cell lines indicated that transporter(s) other than OCT1 and OCT2 are involved in the uptake of YM155 into cancer cell lines.


Assuntos
Imidazóis/metabolismo , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Naftoquinonas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , 1-Metil-4-fenilpiridínio/metabolismo , Ligação Competitiva , Biocatálise , Linhagem Celular , Humanos , Proteínas Inibidoras de Apoptose , Cinética , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/antagonistas & inibidores , Transportador 1 de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico , Preparações Farmacêuticas/metabolismo , Survivina , Transfecção
18.
Drug Metab Dispos ; 38(2): 249-59, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19889885

RESUMO

We investigated the inhibitory effects of (1R,9S,12S,13R,14S,17R,18E,21S,23S,24R,25S,27R)-1, 14-dihydroxy-12-(E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylvinyl-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(2-oxopropyl)-11,28-dioxa-4-azatricyclo [22.3.1.0(4.9)]octacos-18-ene-2,3,10,16-tetrone (FK1706), a novel nonimmunosuppressive immunophilin ligand, on CYP3A4/5 in in vitro and in vivo settings. First, the inhibitory effects of FK1706 (preincubation dependence, inactivation rate estimation, and reversibility) were tested using human liver microsomes. Second, the effect of repeated oral doses of FK1706 (60 mg q.d. for 14 days) on the pharmacokinetics of midazolam (single oral 2-mg dose) was tested in healthy volunteers. Finally, pharmacokinetic modeling and simulation were performed. In vitro experiments showed that FK1706 inhibited CYP3A4/5 in a time-dependent and irreversible manner. The in vitro maximum inactivation rate constant (k(inact)) and concentration of inhibitor that gave half-maximal k(inact) (K(I)) were estimated to be 10.1 h(-1) and 2050 ng/ml, respectively. In the clinical study, FK1706 produced a 2-fold increase in the area under the time-concentration curve (AUC) of midazolam. A pharmacokinetic model developed for this study, which described the time course of concentrations of both FK1706 and midazolam and incorporated CYP3A4/5 inactivation in the liver and intestine, successfully predicted the change in the pharmacokinetics of midazolam using in vitro k(inact) and K(I) values (1.66- to 2.81-fold increases in AUC predicted) and estimated the in vivo inactivation rate to be 0.00404 to 0.0318 h(-1) x ml/ng. In conclusion, FK1706 weakly or moderately inhibited the activity of CYP3A4/5 in vitro and vivo at the tested dose. The model developed here would be helpful in predicting drug-drug interactions and in the design of dose regimens that avoid drug-drug interactions.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/farmacologia , Imunofilinas/metabolismo , Tacrolimo/análogos & derivados , Adolescente , Adulto , Simulação por Computador , Estudos Cross-Over , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/farmacocinética , Feminino , Humanos , Ligantes , Masculino , Microssomos Hepáticos/enzimologia , Midazolam/efeitos adversos , Midazolam/sangue , Midazolam/metabolismo , Midazolam/farmacocinética , Pessoa de Meia-Idade , Modelos Biológicos , Tacrolimo/efeitos adversos , Tacrolimo/sangue , Tacrolimo/farmacocinética , Tacrolimo/farmacologia , Fatores de Tempo , Adulto Jovem
19.
Drug Metab Dispos ; 37(11): 2137-44, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19704029

RESUMO

(-)-N-{2-[(R)-3-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758), a novel "funny" If current channel inhibitor, was being developed as a treatment for stable angina and atrial fibrillation. After a single oral administration of (14)C-YM758, extensive accumulation and long-term retention of radioactivity were observed in the eyeballs of nonalbino rats and in the thoracic aorta of albino/nonalbino rats. Radioluminograms of the eyeballs of nonalbino rats indicated that the radioactivity was localized to the uveal tract, which suggests that the radioactivity may be positively charged and bound mainly to the melanins. Treatment with a mixture of 2 mol/l hydrochloric acid and methanol (5:95, v/v) allowed for the recovery of the major portion of radioactivity from the eyeball, which suggests reversible binding. The radioactive constituents in eyeballs consisted of the unchanged drug (YM758) and three metabolites [mainly 6,7-dimethoxy-2-[(3R)-piperidin-3-ylcarbonyl]-1,2,3,4-tetrahydroisoquinoline (YM-252124)]. Using the organic solvent mixture described above, almost all of the radioactivity was not collected from the thoracic aorta, and approximately 90% was recovered by treatment with elastase, which suggests that some metabolites covalently bind to the elastin fiber localized in the tunica media.


Assuntos
Aorta Torácica/metabolismo , Benzamidas/metabolismo , Olho/metabolismo , Isoquinolinas/metabolismo , Proteínas/antagonistas & inibidores , Animais , Aorta Torácica/efeitos dos fármacos , Benzamidas/farmacologia , Olho/efeitos dos fármacos , Isoquinolinas/farmacologia , Masculino , Proteínas/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
20.
Drug Metab Dispos ; 37(9): 1856-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19520775

RESUMO

1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide (YM155 monobromide), which is a hydrophilic and cationic compound, exhibits antitumor activity in experimental human hormone refractory prostate carcinoma models. Urinary excretion was 18.3 to 28.6% of the dose in the clinical phase I study, and nonrenal elimination may be explained by the biliary excretion of YM155 in its unchanged form. Because the penetration through the sinusoidal membrane of the hepatocytes is the first step and an important part of biliary excretion, we evaluated the uptake of [(14)C]YM155 into human cryopreserved hepatocytes. YM155 was taken up into hepatocytes in a temperature- and concentration-dependent manner. The saturable uptake component was much higher than the nonsaturable passive diffusion component. In vitro hepatic uptake clearance was consistent with the in vivo hepatic intrinsic clearance calculated using clinical study data. Hepatic uptake of YM155 was inhibited by organic cation transporter (OCT) inhibitors, and the IC(50) values for YM155 uptake were comparable to those reported for human OCT1-mediated transport. The interaction of YM155 with candidate transporter, OCT1, was also characterized using S2 cells stably expressing human OCT1 (OCT1-S2) cells. In OCT1-expressing S2 cells, YM155 inhibited the OCT1-mediated uptake of a typical OCT1 substrate, [(14)C]tetraethylammonium. In addition, YM155 was taken up into OCT1-S2 cells These results indicated that OCT1 was the predominant transporter for the hepatic uptake of YM155, and the transporter-mediated uptake clearance observed in vitro may account for the in vivo intrinsic hepatic clearance.


Assuntos
Imidazóis/metabolismo , Fígado/metabolismo , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Naftoquinonas/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Células Cultivadas , Criopreservação , Hepatócitos/metabolismo , Humanos , Proteínas Inibidoras de Apoptose , Túbulos Renais Proximais/metabolismo , Cinética , Survivina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...